Effect of different tilt angles on the performance of the different PV panels in Pouytenga, Burkina Faso

Main Article Content

Issaka Tirogo

Abstract

This study investigates the impact of varying tilt angles on the performance of crystalline silicon (c-Si) and copper indium diselenide (CIS) photovoltaic (PV) panels in Pouytenga, Burkina Faso.  Located in West Africa, Burkina Faso possesses significant solar energy potential, yet faces considerable challenges in terms of energy access, particularly in rural regions.  This research focuses on 3 kW power PV systems, employing the PVGIS (Photovoltaic Geographical Information System) software and the SARAH solar radiation database to conduct simulations at different tilt angles (0°, 10°, 20°, and 30°) with a fixed south-facing orientation (azimuth angle of 0°). The 3 kWp system size was selected as a scalable option suitable for meeting the energy needs of a typical household or small business in the area, and appropriate for off-grid applications.  Using typical meteorological year (TMY) data for Pouytenga, monthly average simulations were carried out. Key performance indicators, including annual energy yield (kWh), average monthly energy production (kWh/month), performance ratio (PR), and capacity factor (CF), were analyzed. The results enable the determination of the optimal tilt angle for both c-Si and CIS PV technologies, as well as a comparison of their performance at different tilt angles. This study provides practical insights for optimizing the design and installation of 3 kW power PV systems in Pouytenga and other regions with similar climatic conditions, ultimately contributing to more effective utilization of solar energy and improved energy access.

Article Details

How to Cite
Tirogo , I. (2024). Effect of different tilt angles on the performance of the different PV panels in Pouytenga, Burkina Faso. WAPRIME, 1(1), 45–56. https://doi.org/10.5281/zenodo.14931748
Section
Articles

References

Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157-175.

Razykov, T. M., Ferekides, C. S., Morel, D., Stefanakos, E., Ullal, H. S., & Upadhyaya, H. M. (2011). Solar photovoltaic electricity: Current status and future prospects. Solar Energy, 85(8), 1580-1608.

Huld, T., Müller, R., & Gambardella, A. (2012). A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy, 86(6), 1803-1815.

Yakup, M. A. B. H. M., & Malik, A. Q. (2001). Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renewable Energy, 24(2), 223-234.

Siraki, A. G., & Pillay, P. (2012). Study of optimum tilt angles for solar panels in different latitudes for urban applications. Solar energy, 86(6), 1920-1928.

World Bank. (2023). Access to electricity (% of population) - Burkina Faso. Retrieved from https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?locations=BF.

Zoma, F., & Sawadogo, M. (2023). A multicriteria approach for biomass availability assessment and selection for energy production in Burkina Faso: A hybrid AHP-TOPSIS approach. Heliyon, 9(10).

Baurzhan, S., & Jenkins, G. P. (2016). Off-grid solar PV: Is it an affordable or appropriate solution for rural electrification in Sub-Saharan African countries?. Renewable and Sustainable Energy Reviews, 60, 1405-1418.

Urraca, R., Huld, T., Gracia-Amillo, A., Martinez-de-Pison, F. J., Kaspar, F., & Sanz-Garcia, A. (2018). Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data. Solar Energy, 164, 339-354.

Pfeifroth, U., Kothe, S., Trentmann, J., Hollmann, R., Fuchs, P., Kaiser, J., & Werscheck, M. (2019). Surface Radiation Data Set? Heliosat (SARAH)? Edition 2.1, Satellite Application Facility on Climate Monitoring, doi: 10.5676. EUM_SAF_CM/SARAH/V002_01.

Khan, M. U., & Jama, M. A. (2024). Evaluation and correction of solar irradiance in Somaliland using ground measurements and global reanalysis products. Heliyon, 10(16).

Awasthi, A., Al Garni, H. Z., & Wright, D. N. (2018). Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia. Renewable Energy.

Dhimish, M., & Silvestre, S. (2019). Estimating the impact of azimuth-angle variations on photovoltaic annual energy production. Clean Energy, 3(1), 47-58.

Nethwadzi, L. C. (2019). Calculating the optimum solar panel orientation for Gauteng Province. University of Johannesburg (South Africa).

Beyazit, N. I., Unal, F., & Bulut, H. (2020). Modeling of the hourly horizontal solar diffuse radiation in Sanliurfa, Turkey. Thermal Science, 24(2 Part A), 939-950.

Beyazit, N. İ., Bulut, H., & Ünal, F. (2019). Diyarbakır ili için uzun dönemli güneş radyasyonunun ekserji analizi. Harran Üniversitesi Mühendislik Dergisi, 4(2), 1-6.

Naeimi, Y., Kooben, F., & Moallem, M. H. (2020). Calculation of the optimal installation angle for seasonal adjusting of PV panels based on solar radiation prediction. arXiv preprint arXiv:2004.12252.

Fernández-Solas, Á., Micheli, L., Almonacid, F., & Fernández, E. F. (2021). Optical degradation impact on the spectral performance of photovoltaic technology. arXiv preprint arXiv:2103.04639.

Aghamohammadi, A., & Foulaadvand, M. E. (2023). Efficiency comparison between tracking and optimally fixed flat solar collectors. Scientific Reports, 13(1), 12712.

Awwad, Z., Alharbi, A., Habib, A. H., & de Weck, O. L. (2023). Site assessment and layout optimization for rooftop solar energy generation in worldview-3 imagery. Remote Sensing, 15(5), 1356.

Abdelaal, A. K., Alhamahmy, A. I., Attia, H. E. D., & El-Fergany, A. A. (2024). Maximizing solar radiations of PV panels using artificial gorilla troops reinforced by experimental investigations. Scientific Reports, 14(1), 3562.

European Commission, Joint Research Center (JRC). (n.d.). PVGIS Photovoltaic Geographical Information System. Retrieved from https://re.jrc.ec.europa.eu/pvg_tools/en/.

Contreras, M. A., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., & Noufi, R. (1999). Progress toward 20% efficiency in Cu (In, Ga) Se2 polycrystalline thin‐film solar cells. Progress in Photovoltaics: Research and applications, 7(4), 311-316.

Kalogirou, S. A. (2023). Solar Energy Engineering: Processes and Systems. Elsevier.

Messenger, R. A. (2018). Photovoltaic Systems Engineering. CRC press.